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The Third-Difference Approach
to Modified Allan Variance

Charles A. Greenhall,Member, IEEE

Abstract—This study gives strategies for estimating the mod-
ified Allan variance (MVAR), and formulas for computing the
equivalent degrees of freedom (edf) of the estimators. A third-
difference formulation of MVAR leads to a tractable formula
for edf in the presence of power-law phase noise. The effect of
estimation stride on edf is shown. First-degree rational-function
approximations for edf are derived, and their errors tabulated.
A theorem allowing conservative estimates of edf in the presence
of compound noise processes is given.

Index Terms—Allan variance, clock noise, finite differences,
frequency stability, power-law noise, time and frequency.

I. INTRODUCTION

A LLAN VARIANCE (AVAR) and modified Allan vari-
ance (MVAR) are statistical measures of fractional fre-

quency instability. They are both used extensively to measure
and characterize the stability performance of clocks, oscilla-
tors, and systems for disseminating time and frequency [1],
[12]–[14]. Let us give brief definitions. The raw data for these
measures comprise a sequenceof time residuals, say from
a comparison of two clocks or a phase comparison of two
oscillators. We assume here that the samplesare evenly
spaced in time, withsample period . Let an averaging
time be given, where is an integer. The Allan
variance, denoted by , is defined as times the
time average or mathematical expectation of the squares of
second differences, with step, of the sequence . Modified
Allan variance, denoted by mod , is defined in the same
way, except that the sequence is replaced by the sequence

of moving averages

(1)

By virtue of the second difference in their definitions, stable
statistical estimates of AVAR and MVAR can be accumulated
in the presence of a class of phase noise models, the processes
with stationary second increments [12], from which useful fits
to the behavior of oscillators, amplifiers, etc., can be selected.
Special cases arepower-lawmodels, associated with spectral
densities having the property

const

Manuscript received April 3, 1995; revised December 1, 1995. This
work was performed by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space
Administration.

The author is with the Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA 91109 USA (e-mail:
cgreen@horology.jpl.nasa.gov).

Publisher Item Identifier S 0018-9456(97)03608-5.

as where . In the usual nomenclature
of frequency and time, the noises associated with

are called white phase, flicker phase, white
frequency, flicker frequency, and random-walk frequency,
respectively. Nonintegral values of are also allowed; the
corresponding noises are called “fractional.”

A log-log plot of measured or mod vs ,
the familiar - plot, often indicates phase noise that can be
modeled as a linear combination of uncorrelated power-law
components, the component associated withbeing identified
by a straight-line section with slope . The main
advantage of MVAR over AVAR is the increased range of

over which this slope relationship holds: for
AVAR, for MVAR [3]. In particular, a mod
plot can easily distinguish white phase from
flicker phase . The corresponding asymptotic
dependencies, and for some , can barely
be distinguished in practice.

It would seem from (1) that the extra averaging operation
that gives MVAR its superior power of discrimination also
multiplies the amount of calculation by a factor of. Pre-
vious papers [2], [7], which treat the mechanics of MVAR
computation, show how to reduce that factor to 4/3, excluding
an initial operation on the data set. The approach given in
[7] reformulates the definition of MVAR in terms of third
differences of the cumulative sum of the time residuals. Here,
after restating this formulation, we apply it to the study of the
confidence of estimators of MVAR in terms of their equivalent
degrees of freedom (edf). Tractable expressions for edf in the
presence of power-law noise allow extensive numerical trials
of estimator parameters, especially the estimation period, the
amount by which the estimator summands are shifted in time.
The outcome is a practical guideline for estimator design.
Simple approximations to the edf of these estimators are
constructed and tested, with the aim of providing a convenient
package for computing approximate confidence values for
most experimental situations. Finally, we show how to obtain
conservative confidence values in the presence of phase noise
whose spectrum is a sum of power laws.

II. MVAR AND ITS ESTIMATORS

A. Third-Difference Formulation

The definition, calculation, and statistical theory of modified
Allan variance are all simplified by an approach that derives
MVAR from the cumulative sum of the time residuals .
We begin with the standard formulation. Choose an averaging
time , and form the time-residual moving averages
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from (1). Let be the backward difference operator,
defined by for any sequence . Use the
second-difference operator to form the MVAR filter output

(2)

By definition

mod (3)

where denotes either mathematical expectation E or an
infinite time average over . Although only the variable
appears, mod actually depends on both and . For
brevity, we shall occasionally suppress the dependence of

on the parameter .
The third-difference formulation expresses in terms

of the sequence defined by

(4)

In terms of , the time-residual averages are given by

which, combined with (2), gives

(5)

for .
Formula (5) has several advantages over (2) for use in

(3). The filter taking to has only four taps; the
filter taking to has taps. The computation of
estimates of mod from third differences of is like
the computation of estimates of from second differences
of , and the computation of strided estimates is simplified.
Finally, it is easy to construct useful and tractable stochastic
models of the sequence. The cost of these advantages is
the computation of from the recursion .

B. MVAR Estimator with Variable Stride

To estimate MVAR with limited data, the infinite average
in (3) is replaced by a finite average of the . When
computing analogous estimates of AVAR by averaging the
squares of , it is customary to increase by either 1
(full overlap) or overlap. The existing literature on
MVAR ([1], for example) usually assumes a step of 1. Here,
we allow the step to vary between these extremes. Let us
establish some terminology. We specify anestimation period

, where the positive integer is called the
estimation stride, and we consider averages over all available
values of .

Assume that time residuals are available.
Then there are summed values .
Let be the number of samples of obtainable

from (5). Then is the largest integer satisfying
, namely,

(6)

where denotes the integer part of. The MVAR estimator
to be studied is

(7)

C. Continuous-Time Analog

A continuous-time analog of this setup yields simple and
useful approximations. It is convenient to change the defini-
tions, not only of the underlying noise processes (see below),
but also of MVAR and , by changing discrete-time averages
to continuous-time averages. The third-difference approach
works here, as well. Let represent time deviation as a
function of time. Write

Then

and hence

(8)

Define the continuous-time analog of mod by

mod (9)

(identical to Bernier’s asymptotic MVAR [3]), and the
continuous-averaging estimator by

(10)

Note that if is available for a duration , then we should
let , the duration of availability of . Later, to
match properties of to those of , we shall let ,
where is given by (6).

III. N OISE MODELS

The statistical properties of depend on the random
processes chosen to represent the sampled time residuals.
Following Walter’s treatment of discrete sampling [15], we
use an explicit discrete-time power-law model instead of a
sampled continuous-time model for our main calculations.
This has two advantages. First, we avoid the complications
of the interactions among the hardware bandwidth, the sample
period, and the averaging time [3], [13]. Second, the discrete-
time model works especially well with the third-difference
formulation.
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TABLE I
GENERALIZED AUTOCOVARIANCE OFw FOR DISCRETE-TIME AND CONTINUOUS-TIME POWER-LAW PHASE NOISE

Because the measure of estimator confidence to be examined
is invariant to scale factors, we use the most convenient scaling
for spectral densities to reduce the complexity of constant
factors in the generalized autocovariances shown in Table I.
Factors for converting to the standard scaling used by the
frequency and time community are given below.

The most critical assumption about the models is the ab-
sence of linear frequency drift. We assume that the drift rate
either is zero or is known from considerations external to the
immediate data set. In the latter case, we can assume that the
drift has been removed from the data. In particular,has no
long-term quadratic component, has no long-term cubic
component, and has zero mean. This assumption will
later be repeated at the point where it is needed.

A. Discrete-Time Power Laws

Let the two-sided spectral density of the-sampled se-
quence be given by

(11)

Then as . These so-called
fractional-difference processeswere described by Granger and
Joyeux [8] and by Hosking [9]. Because the first difference of
the process defined by (4) is just , we know that is
also a fractional-difference process, with spectral density

(12)

This frequency-domain description of has an equiva-
lent time-domain description, thegeneralized autocovariance
(GACV) sequence , where runs through all the inte-
gers. If were stationary, then its ordinary autocovariance
(ACV) could be derived as the Fourier transform of (12). For
the range of appropriate to this application (4 to 0), is
not stationary, but does have stationary third increments. With
some care, one can extend the notion of ACV to the class
of processes with stationaryth increments in such a way
that their covariance properties can conveniently be described
in terms of a function, the GACV, that still depends onone
discrete time variable. Although the GACV itself cannot be
regarded as a covariance in the usual sense, under certain
restrictions it can beused like one. GACV’s of continuous-
time and discrete-time processes have already been used in
studies of Allan variance and power-law noise simulation

[4]–[6], [11]. A continous-time version of the GACV theory
has been published [5]. Here, we can only give hints of the
discrete-time theory, which is similar.

Table I gives formulas for for the values of needed
in this study. Bear in mind that the noise-type label applies
to , a power-law process with exponent, while
applies to , a power-law process with exponent . The
formula for nonintegral in Table I is the same as the one
derived for fractional-difference processes by others [8], [9],
[11]. It has been verified that this formula actually does extend
to the nonstationary situation. Because passage to the limit of
the GACV as approaches an integer is unfortunately not
straightforward in general, the formulas for integralwere
derived from known ACV’s of stationary fractional-difference
processes by repeated solution of difference equations of form

, where is the ACV or
GACV of a fractional-difference process with exponent, and

is the second-order central difference operator with step 1.
For , the process defined by (5) is stationary,

and the GACV theory allows its ordinary ACV sequence

E

to be calculated directly from by

(13)

The central difference operator appears as the operator
product .

It is appropriate to note here that (3), (13), and Table I lead
to a formula for MVAR in the presence of fractional-difference
phase noise, namely,

mod E (14)

which, when expanded by (13), is equivalent to a formula of
Walter [15, eq. (75)] that was derived from a frequency-domain
integral.

The standard power-law scaling used by the frequency and
time community is based on a one-sided spectral density,

, of fractional frequency , where
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. To convert , and mod to
this scaling, multiply them by the factor

(15)

B. Continuous-Time Power Laws

Because the continous-time analog given above avoids
sampling completely, continuous-time random-process models
are appropriate. Let the two-sided spectral density of be
given by

(16)

Then, since , we know that is also a power-law
process, with spectral density

For , the process has stationary third increments.
Moreover, for integrates to a finite value over
any frequency range that excludes an interval about zero.
Therefore, a high-frequency cutoff is unnecessary. Its GACV
function [4], [11] is also given in Table I. As with the
discrete-time model, the process given by (8) is stationary,
with ACV function

E

that can be calculated from by

(17)

A formula for mod , analogous to (14), is

mod (18)

Substituting from Table I into (17), we find from
(18) that mod is exactly proportional to , for

. The same result was derived by Bernier [3] from
a frequency-domain integral.

The factor for converting , and mod
to standard frequency and time scaling is the same as (15),
with replaced by 1.

IV. EQUIVALENT DEGREES OFFREEDOM

By definition, the equivalent degrees of freedom (edf) of a
positive random variable is defined by

edf
E
var

(19)

where var denotes the variance of . If is distributed as
a constant multiple of a random variable, with degrees
of freedom, then edf . For example, the sample
variance of independent, identically distributed Gaussians
has degrees of freedom. Even if does not have a

chi-squared distribution, edf can still serve as a convenient
dimensionless measure of the confidence ofas an estimator
of its mean E : we can interpret edf as the degrees of
freedom of the chi-squared distribution that has the same ratio
of mean to standard deviation. Since the MVAR estimator
is the sum of squares ofcorrelatedzero-mean Gaussians, it
is reasonable to assume that is approximatelydistributed
as const , and, on this basis, to construct approximate
confidence intervals for mod [10], [18].

A. Discrete Time

Let us compute edf . By (7) and (14)

E (20)

that is, is unbiased for mod . Also from (7) we have

var cov

(21)

where cov denotes the covariance of the random
variables and . To compute the covariances in (21), we
assume that is a stationary Gaussianzero-meanprocess.
As indicated earlier, the assumption E is crucial;
in practice, it means that the effect of linear frequency drift
on a time scale of order is negligible. Since any two jointly
Gaussian zero-mean random variablesand satisfy cov

E , (21) becomes

var (22)

The diagonal , for to , contains
identical terms. Summing over these diagonals converts the

double sum to a single sum, which, combined with (19) and
(20), gives the main formula

edf
(23)

for edf , where

Formula (23) is analogous to existing formulas for the edf
of AVAR estimators ([6] and references therein). The main
difference is that the ACV of is computed from sixth
differences of the GACV of instead of fourth differences
of the GACV of .

Formula (23) is mathematically equivalent to an earlier
formula of Walter [15, (eq. 32)], but requires less computation.
Recall from (13) that each value of needed in (23) is
obtained from seven values of . If no values of
are stored in advance, it takes evaluations of to
compute (23). Walter’s formula for var is a double sum
requiring evaluations of . In
practice, moreover, one can compute and store the values
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, in advance. This shows the advantage of
the third-difference approach, which derives MVAR estimator
summands from four values of instead of values of .

In connection with a recent conference paper [18], tables
of edf for were generated by the method given
here, by Walter’s method, and by Monte Carlo simulation. The
results of the two theoretical methods agreed within 0.1%; the
simulation results agreed with the theoretical results within a
few percent.

A note on numerical computation. The ACV tends
to zero as , yet is obtained from differences of

, which tends to with . Clearly, one should use
double precision for evaluating (13). Even so, the computed
values of can deteriorate for large, especially for
nonintegral , where involves functions. I was able
to cure this problem by replacing the upper limit of the
summation in (23) by , where is the smaller of
and . (In all actual computations, is assumed
to be an integer.)

B. Continuous Time

The computation of edf follows the same pattern. By
(10)

E

and, with the assumption that , as a function of , is a
stationary Gaussian zero-mean process,

var

A change of variables converts the double integral to

in which we shall make the further change of variable .
From Table I and (17), it can be verified that

(This is a scaling property of continuous-time power-law
noise.) Thus, defining

we obtain

edf
(24)

where .

V. EFFECT OF ESTIMATION PERIOD

Formula (23) was used to generate tables of edffor
combinations of , and noise exponent. Recall that

Fig. 1. Equivalent degrees of freedom of MVAR estimators.

is the number of time residuals in the data set, ,
where is the averaging time, and , the estimation
stride, where is the estimation period. From here on, we
also assume thedivisibility condition, which says that the
estimation period divides evenly into the averaging time, that
is,

where is an integer. Thus, the estimation stride is
restricted to divisors of . This condition allows and edf

to be calculated from the subsampled arrays and
, respectively. For each combination,

the number of estimation summands to be used in (23)
is calculated by (6).

A selection of edf values is plotted in Fig. 1 for 1024 time
residuals and the five standard phase-noise types. Observe how
edf depends on for fixed . For each noise type and

, any between 1 and gives a value of edf
that is nearly maximal for that . As the two-point curves for

show, we should take in this case; the same
is true for . Here is an empirical result.

Assume an averaging time at most1/4th the duration of
the time-deviation record. For each power law between white
phase and random-walk frequency, any estimation period
between and that divides evenly into gives
an MVAR estimator whose edf is within8% of the maximal
value for .

Fig. 1 shows that the variation of edf with is greatest
for white phase. Also, it turns out that the quantity

(25)
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is a rough estimate of edf , especially for in the
recommended range .

The choice of estimation period might depend on a
tradeoff between convenience and computational effort. For
simplicity, one can always choose . If the data set is
large, one can choose the largest acceptable value, ,
to minimize the number of terms needed to calculate
from (7).

VI. L OWER BOUNDS FOR MVAR EDF

The aim of this section is to uncover simple approximation
formulas for edf that can be used in practice in place of the
exact summation (23). There are two rigorous lower-bound
formulas that can serve this purpose.

A. Discrete Time

Up to now, we have concentrated on a time-domain for-
mulation of edf . The following result is proved by a
frequency-domain argument, which is not given here.

Theorem 1:Assume that the time residuals, with sample
period , are a process with stationary Gaussian zero-mean
second increments. Let have the fractional-difference spec-
trum (11), where . Let , where and

are positive integers. Using (4), (5), (7), and any positive
integer , form the MVAR estimator with averaging time

and estimation period . Then

edf (26)

where

In other words, we have a bound of form edf , where
as given above in (25). Tables ofversus , and

can be generated by numerical integration.

B. Continuous Time

It is much easier to derive a useful lower bound for edf.
Let . From (24) we have

edf

This gives a bound of form

edf (27)

TABLE II
COEFFICIENTS FORAPPROXIMATING THE EDF OF MVAR ESTIMATORS

The constants and , which depend only on , are
computed by numerical integration. To use this expression as
an approximation to edf , we again let .

C. An EDF Approximation Strategy

The right sides of (26) and (27) can be regarded as candidate
approximations for edf . To assess their quality and to
choose between them, tables were generated for a selection of

, and . The following empirical strategy and error
statement emerged.

Assume fractional-difference phase noise with power-law
exponent between (random-walk frequency) and 0 (white
phase), at least 16 time-residual points, an averaging timeat
most 1/5th the duration of the measurement, and an estimation
period between and that divides evenly
into . In our notation, , and

, where is an integer, and .
For or , the discrete-time lower bound (26) is

used as an approximation for edf. In all other cases, the
continuous-time lower bound (27) is used. The relative error
of this strategy is observed to be at most11.1%.

To implement this approximation in practice, use the for-
mula

edf (28)

where is obtained from (6), and the co-
efficients , as functions of and , are drawn from
Table II.

Table III shows the percentage errors of this approximation
(100(approx/exact 1)) for a selection of , and .
The full range of observed errors is represented. To balance
the errors, it was found expedient to reduce the continuous-
time edf approximation, for white phase only, by 5%. Tables II
and III include this adjustment.

VII. COMPOUND NOISE SPECTRA

The previous results and methods assume a power-law phase
noise spectrum proportional to (11), for some fixed exponent

. If that were indeed the case, our statistical efforts ought to
be directed toward estimating the two-parameter set consisting
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TABLE III
PERCENTAGE ERRORS OFMVAR ESTIMATOR EDF APPROXIMATION

of and the constant of proportionality. Instead, as usual, we
find ourselves using parametric tools to evaluate the confidence
of a nonparametric statistic. The value of edfdepends on

. What can we do in the presence of a polynomial phase
noise model

(29)

a finite sum of power-law spectra? Some help is given by
the following theorem, which, although weak and perhaps
obvious, is better than no knowledge at all about the situation.

Theorem 2:Let the phase noise be a finite sum of indepen-
dent component noises with stationary Gaussian zero-mean
second increments. Form an MVARestimator from the
given phase noise, and corresponding estimatorsfrom the
components. Then

edf edf

In other words, we never do worse than the worst component.
To apply this theorem to the situation (29), assume that the

component values are all in some subinterval of [4, 0] (the
whole range, perhaps). Use (28) and Table II to compute edf

for each tabulated in the subinterval, and take the smallest
value as aconservativeestimate of edf . For example, if one
believes that the noise has components between white phase
and flicker phase, perhaps from prior knowledge, perhaps as
evidenced by a log-log plot of mod versus with slopes
between 3/2 and 1, then one can minimize (28) over the
first three rows of Table II.

The proof of Theorem 2, although not difficult, is not given
here. It can be generalized to AVAR estimators and other
situations involving averages of the square of a stationary
Gaussian zero-mean process. Its usefulness for MVAR is
enhanced by the relatively weak dependence of estimator edf
on , as can be seen from Fig. 1. An inspection of edf tables
for fully overlapped AVAR estimators [6], [14] shows a much

sharper dependence on, especially for large . Thus,
minimizing over a set of in the computation of estimator edf
causes a smaller loss of accuracy for MVAR than for AVAR.

VIII. C ONCLUSIONS

Although the overall problem of estimating modified Allan
variance MVAR may appear to be more difficult than the same
problem for conventional Allan variance AVAR, theoretical
and numerical results calculated here from the third-difference
approach show that in some ways the situation is actu-
ally reversed. A tractable expression for the edf of MVAR
estimators in the presence of power-law phase noise was
derived, and simple approximations constructed. Numerical
computations of edf yielded a rationale for choosing the
estimation period or stride: it was found empirically that the
use of an estimation period up to one-fourth the averaging time
does not appreciably degrade the confidence of the estimator
below that of the fully overlapped estimator. Often, in fact,
there is no degradation. The computations also revealed that
the extra filtering inherent in MVAR causes the edf of an
estimator to be less sensitive to the power-law exponent than
the edf of a typical AVAR estimator. Consequently, MVAR
error bars can be more robust against spectrum uncertainties
than AVAR error bars.

The most important limitation on these results, especially
for long tests of oscillators, is that linear frequency drift must
be negligible. If a drift rate is known from considerations
external to the immediate data set, then one can remove it
from the phase data, and we are back to the case of zero
drift. For AVAR, it is known that estimation of drift from the
data themselves, and removal therefrom, cause negative AVAR
estimator biases that worsen as averaging timeincreases. The
use of three-point [16], [17] or four-point [4] drift estimators,
which extract a quadratic component of the time-residual
sequence , simplifies calculations of the mean and variance
of estimators of AVAR with drift removed. I have no doubt
that similar calculations for MVAR estimators can be made
on the basis of four-point drift estimators that extract acubic
component of the sequence of cumulative sums of .
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